
Trinity Audio Player Integration Guide

This document describes how to integrate the Trinity Audio Player into a page as well as how to configure and control it

Updated: Mar 27, 2023
Document version: 2.6

Integration

In order to integrate the player into a page, you need to insert a script tag into your HTML page.

The player tag should looks like this:

<script src="https://trinitymedia.ai/player/trinity/XXXXXXX/?pageURL=YOUR_ENCODED_PAGE_URL_HERE"
 charset="UTF-8"></script>

There are a few ways to do that.

HEAD

Include the player <script> tag into the HTML <head> tag.

<!DOCTYPE html>

<html lang="en">
 <head>

 <meta charset="UTF-8">

 <title>Trinity Page Example</title>
 <meta name="viewport" content="width=device-width, user-scalable=no, initial-scale=1" />

 <script src="https://trinitymedia.ai/player/trinity/XXXXXXX/?pageURL=YOUR_ENCODED_PAGE_URL_HERE"

 charset="UTF-8"></script>
 </head>

 <body>

 <div class="content">Hello!</div>
 </body>

</html>

In that case, the player will be appended right into the body tag. In order to control where exactly it should get rendered, you can
create a div tag with trinityAudioPlaceholder class in the desired place, e.g.

<header></header>

<div class="trinityAudioPlaceholder"></div>

<article></article>
<footer></footer>

BODY (Dynamic)

Put the player tag wherever you want inside the body tag, and it will get rendered there, e.g.

<html lang="en">
 <head>

 <meta charset="UTF-8">

 <title>Trinity Page Example</title>

 <meta name="viewport" content="width=device-width, user-scalable=no, initial-scale=1" />

 </head>
 <body>

 <div class="content">Hello!</div>

 <script src="https://trinitymedia.ai/player/trinity/XXXXXXX/?pageURL=YOUR_ENCODED_PAGE_URL_HERE"
 charset="UTF-8"></script>

 <article></article>

 <footer></footer>

 </body>
</html>

You can use the following script to inject player with correct pageURL for you. Just place the script where you expect player to render:

<script>
 const scriptEl = document.createElement('script');

 scriptEl.setAttribute('fetchpriority', 'high');

 scriptEl.setAttribute('charset', 'UTF-8');
 scriptEl.src = 'https://trinitymedia.ai/player/trinity/XXXXXXX/?pageURL='

 + encodeURIComponent(window.location.href);

 document.currentScript.parentNode.insertBefore(scriptEl, document.currentScript);
</script>

Script Tag Parameters

Trinity Player accepts various query parameters, so you can change its configuration on the fly without changing those settings on the

unit level for all pages.

Name Description
Rewriting

unit
settings?

Values

XXXXXXX Required. Your unit ID

pageURL
Required. Encoded URL of
your page

e.g. https%3A%2F%2F
example.com%2Fpage-1%2Farticle-1

language Text language + en, es, it, fr, de, pt

partner Partner name

FAB

FAB view. Player becomes
small FAB when user scrolls

and player disappears from

view. Can be only enabled

+ 1

abtest

A/B testing for player view.

For more information

please contact us.

+

voiceGender Gender of voice + m, f. NOTE: Rewrites gender if set

voiceId Desired voice ID +

To get the full list of supported voice ID’s visit the

dashboard and choose at the Player configuration

screen

playbackSpeed Reading speed + 0.5 - 2

textSelector Custom text selector +

http://example.com/

Name Description
Rewriting

unit
settings?

Values

readContentType

URL to read text from

instead of the original one,

located by provider
selector

+

readContentConfig JSON config +

documentLoadType
Type of document load

scenario

DOMContentLoaded,
onload,

onSelectorVisible,

onSelectorExists

documentLoadTypeSelector

CSS selector when
documentLoadType is

onSelectorVisible or

onSelectorExists type

multipleArticlesAlg
Enable playlist of popular
articles from the same

domain

+ byContentStarted

adMaxDurationAllowed
Advertisement length
limitation in seconds

+ e.g. 30

subscriber Disable Ads + 1

publisherUserId

Identifier of your visitor

that will be stored in the
Trinity player

Any custom identifier, for example a UUID

g_cust_params

additional parameters to

pass to Google IMA. Should
be URL encoded

param1%3Dabc%26param2%3D123

cms

cms attribute to

automatically index the

content created into the
CMS

cms=%7B%22channelHash%22%3A%22a5gTS…

success%22%5D%7D

themeId Player theme id +

publisherSections

Use this field to pass the
different section of the

content page. This will be

used for indexing and

reporting.

-

shareEnabled
Enable/disable share

functionality
+ 1/0

Just pass the appropriate parameter to Player tag as a query parameter, e.g.

<!-- testing FAB functionality -->
<script src="https://trinitymedia.ai/player/trinity/XXXXXXX/?pageURL=YOUR_ENCODED_PAGE_URL_HERE&FAB=1"

 charset="UTF-8"></script>

Page Parameters

The Trinity Player supports some functionality enablement by passing certain parameters to the page URL. That comes in handy for

testing features without any code modifications. For example, if Trinity Player is disabled for the unit by default, it is possible to pass ?

TRINITY_LOAD_PLAYER=1 in the page URL in order to test it. This allows production environment testing, while other users can’t see it
until you are ready.

Name Description Values

TRINITY_FAB Enable FAB functionality 1

TRINITY_MULTIPLE_ARTICLES_ALG Enable multiple articles byContentStarted

TRINITY_FAB_ONLY Enable/disable FAB-only mode for Trinity Player 1/0

Just pass those options as query parameters to your page URL, e.g.

http://example.com/some-article?TRINITY_LOAD_PLAYER=1

Will load Trinity Player even if it’s disabled.

Document load scenario

This section should be considered for publishers using dynamic content loading

Some pages have dynamic content loading (AJAX). Since the player loads as soon as the Document DOM is ready, it can turn out that

the textual content hasn’t rendered yet, and the player will show 00:00 as it has no content to read.
That could be controlled by adjusting the documentLoadType parameter.

The default one is DOMContentLoaded . As this is the default method, nothing should be passed to the URL parameter. When the

DOM is ready the player will read the content using the selector set for the unit.

The onload type will wait until the document is fully loaded, e.g. all images, all AJAX requests and more. It could take a while, but

could be useful for simple fixing of loading issues, especially if you don’t want to use more advanced techniques such as
onSelectorVisible or onSelectorExists .

The onSelectorVisible type requires passing the documentLoadTypeSelector parameter as well. The documentLoadTypeSelector

should be passed with a CSS selector, and the player will check if that selector exists and is visible on the page. When the selector is

ready, the player will render and read the content using the default selector set for the unit.
That technique is useful if you have dynamic content loading to the page, and using it will make the player display only once its ready.

The onSelectorExists type uses the same approach as onSelectorVisible but instead checks if the element at the provided CSS

selector exists, not if it is visible.

<!-- example for checking .content > div (encodeURIComponent(btoa('.content > div'))) -->
<script src="https://trinitymedia.ai/player/trinity/XXXXXXX/?pageURL=YOUR_ENCODED_PAGE_URL_HERE

&documentLoadType=onSelectorVisible&documentLoadTypeSelector=LmNvbnRlbnQgPiBkaXY%3D" charset="UTF-8">

</script>

Read Content Hook

In some cases, you can’t provide all of the content at once on one page, due to lazy-loading text or other types of pagination. This also
pertains to cases where getting the full text from the page could be difficult or impossible due to missed semantic HTML. In cases like

these, you can use one of the custom ways we offer to pass the text.

Type Description

URL Read the content using the provided URL. All text on the page will be read

URL_BY_PAGE_SELECTOR
Read the content from a provided URL and use a certain CSS selector to filter out the right

text

WP_JSON_BY_PAGE_SELECTOR Read the content from WP-JSON API, prefix URL provided on a page using a certain selector

Examples

Encode pageURL

pageURL query param must be encoded

encodeURIComponent('https://example.com/page-1/article-1'); // https%3A%2F%2Fexample.com%2Fpage-1%2Farticle-1

Read content from remote URL

In this method, we would like to read the text from a provided URL, for example https://example.com/amp/article-123.

First, prepare the query string passed to the player.

encodeURIComponent(JSON.stringify({

 url: 'https://example.com/amp/article-123',

 dataType: 'html' // since our content is HTML,
 /*

 In case using CORS and having page under paywall/login that requires cookies

 in order entire content to be rendered.

 Be sure that your cookies use subdomain (.mydomain.com) if needed and you don't have
 `Access-Control-Allow-Origin: *` in response, since such response is not allowed when cookies is sent.

 */

 // sendCookies: true
})); // %7B%22url%22%3A%22https%3A%2F%2Fexample.com%2Famp%2Farticle-123%22%2C%22dataType%22%3A%22html%22%7D

Now, pass two additional parameters to the player:

1. Add the &readContentType=URL parameter to our tag, in order to select this method.

2. Pass the hash you received above using the readContentConfig parameter:
&readContentConfig=%7B%22url%22%3A%22http... .

Read content from a remote HTML, e.g. AMP page

This method is very similar to what is mentioned above, while the main difference is that we won’t read all the text from the URL but

we will apply the CSS selector from the unit on it.
This is usually used with AMP integration, due to AMP limitations, as we’re using the regular HTML version of the page to get acess to

the text.

In the following example, you can see that we have no access to the page content:

<html>
 <head>

 <link rel="amphtml" href="https://example.com/amp/article-123">

 </head>
</html>

We want to read the text from the link above, e.g. https://example.com/amp/article-123.

In order to do that, let’s first prepare the query string that will be passed to the player.

https://example.com/amp/article-123
https://example.com/amp/article-123

encodeURIComponent(JSON.stringify({
 selector: 'link[rel=amphtml]',

 dataType: 'html' // since our content is HTML

})); // %7B%22selector%22%3A%22link%5Brel%3Damphtml%5D%22%2C%22dataType%22%3A%22html%22%7D

Now, pass two additional parameters to the player:

1. Add the &readContentType=URL_BY_PAGE_SELECTOR parameter to our tag, in order to select this method.

2. Pass the hash you received above using the readContentConfig parameter:

&readContentConfig=%7B%22selector%22%3A%22link%5Brel... .

Read the content from WP-JSON API

In this case, your site is using the Wordpress CMS and we can leverage the WP API to read the text directly.

Assuming that our part of the HTML code is:

<html>

 <head>
 <link rel="https://api.w.org/" href="https://example.com/wp-json/">

 <!-- Pay attention, by default WP doesn't provide such functionality.

 You have to expose it by yourself -->

 <meta name="slug" content="my-article-123">
 </head>

</html>

The resulting URL in the example will be https://example.com/wp-json/wp/v2/posts?slug=my-article-123 and we’ll be using the
WP-JSON API to get the text for the provided slug.

Next, let’s prepare the query string for the player.

encodeURIComponent(JSON.stringify({
 selector: 'link[rel=https://api.w.org]',

 slugSelector: 'meta[name=slug]'

})); // %7B%22selector%22%3A%22link%5Brel%3Dhttps%3A%2F%2Fapi...

Now, pass two additional parameters to the player:

1. Add &readContentType=WP_JSON_BY_PAGE_SELECTOR parameter to our tag, in order to select this method.

2. Pass the hash you received above using the readContentConfig parameter:

&readContentConfig=%7B%22selector%22%3A%22link... .

API

The Trinity Player provides a simple API for reading its status and controlling it. It’s exposed via the global variable
window.TRINITY_PLAYER .

Property Type Description

constants Object Constants used in the API, like event names

api Object API methods

api.isMultiplePlayers Boolean indicates if multiple players are going to be used on the page

api.pause(playerId) Function Pause a specific player

api.play(playerId) Function Play a specific player. Please note, it will work only if the user has already
clicked play at least once during this session on the page. Otherwise, the

Property Type Description

browser will throw an error.

api.pauseAll() Function Pause all players

api.getFirstPlayer() Function
Returns (first) player id, e.g. 945a52a1149c91eee4b167958b51e406. Useful
when 1 instance of the player is used on one page. In case of multiple players,

please access via the players object

api.createPlayer(playerId) Function

(Re)create the player for a certain playerId. Please note that the playerId

should exist in the TRINITY_PLAYER.players object. playerId is optional. See
Reinit player

api.removePlayer(playerId) Function
Remove a player with a specific playerId. playerId is optional. See Reinit

player

api.getDuration(playerId) Function Get audio duration for specific playerId

api.setVolume(volume, playerId) Function Set audio volume for player

api.getVolume(playerId) Function Get audio volume for player

api.setMuted(isMuted, playerId) Function Mute/unmute player

api.setCurrentTime(time, playerId) Function Seek audio to specific position. Time in seconds

api.getCurrentTime(playerId) Function Get current audio progress time

api.getMetadata() Function Get currently playing article’s metadata

api.setUserId(userId) Function Set your custom identifier for the current visitor dynamically

options Object Unit configuration

players Object Players configuration

players[playerId] Object Configuration of a player under a certain Id

players[playerId].resultReadingText String Text that will be read by the player

players[playerId].textSelector String CSS text selector

players[playerId].state String Player current state. not-started , play , pause

players[playerId].enteredView Boolean Tells if the player has been shown during this user session

players[playerId].translateTo String Selected translation language

isLoaded Boolean indicates if the Trinity initial script has been loaded

resultReadingText String
Text that will be read from the page. Will be overridden with last player in case
of multiple players. Check the players[playerId].resultReadingText

property instead.

api.getMetadata

Get currently playing article’s metadata:

window.TRINITY_PLAYER.api.getMetadata();

Example result:

{
 articleSection: "Test Section",

 author: "Article Author",

 contentURL: 'https://example.com/news/article/1',

 dateModified: "2020-02-20T00:00PM-01:00",
 datePublished: "2020-02-02T02:02AM-01:00",

 description: "Test Description",

 faviconURL: "https://www.example.com/favicon.ico",
 imageURL: "https://www.example.com/image.png",

 language: "en",

 publisher: "Test Publisher",
 title: "Test Title"

}

Reinit player

In case of an SPA (single page application) where content changes dynamically and the player gets automatically removed from the

DOM, there’s an option to re-create the player once new content is available.

Possible steps are:

1. Remove the player on route change using TRINITY_PLAYER.api.removePlayer() . Although it’s an optional step as player is
deleted when the old content is removed from the DOM, it will stop the player automatically for you.

2. Re-create the player using TRINITY_PLAYER.api.createPlayer() . The player will be rendered either in the provided

placeholder (trinityAudioPlaceholder) or where the player tag is presented.

Events

All events from Trinity Player fire with type TRINITY_TTS .

In order to listen for events, you have to wait until injector script is loaded, and use TRINITY_PLAYER.message.* to check what event
was fired.

Listen for injector script ready

Fires when the Trinity Player initial script loaded, and the TRINITY_PLAYER object is in the scope and ready to use. Can be used if you

need access to API and need to wait until the player is ready.

window.addEventListener('message', (event) => {

 if (event.data?.type !== 'TRINITY_TTS') return;

 if (event.data.value.action === 'injectorImp') {
 console.info('Trinity Audio player injector script is loaded!');

 // now API is ready via window.TRINITY_PLAYER.api

 }
});

Listen for events

Format of events being fired is:

{

 type: 'TRINITY_TTS',

 value: {

 action: String,
 message: Object|String|undefined,

 playerId: String

 }
}

In order to listen to them, filter out all postMessage events by window.TRINITY_PLAYER.constants.postMessageType type.

https://en.wikipedia.org/wiki/Single-page_application

window.addEventListener('message', (event) => {
 if (event.data?.type !== window.TRINITY_PLAYER.constants.postMessageType) return;

 console.log(event);

});

Events

NOTE: Always use constants provided below, since names of events can be changed. That’s the only was to guarantee you persistent of names.

NOTE: In case abtest is enabled every event will contain abtest name in the message body

Event name (action) Description

injectorImp when injector script is loaded, and TRINITY_PLAYER is ready

TRINITY_PLAYER.message.playerReady Player is ready for use

TRINITY_PLAYER.message.playClicked Play is clicked

TRINITY_PLAYER.message.pauseClicked Pause is clicked

TRINITY_PLAYER.message.resumed Player resumed

TRINITY_PLAYER.message.contentStarted Audio content started

TRINITY_PLAYER.message.onFirstQuartile Audio content is 25% complete

TRINITY_PLAYER.message.onMidPoint Audio content is 50% complete

TRINITY_PLAYER.message.onThirdQuartile Audio content is 75% complete

TRINITY_PLAYER.message.onComplete Audio content is completed

TRINITY_PLAYER.message.adOpp Ad being requested

TRINITY_PLAYER.message.onAdStarted Ad is started

TRINITY_PLAYER.message.onAdComplete Ad is completed

TRINITY_PLAYER.message.enteredView Player being in view

TRINITY_PLAYER.message.exitedView Player being out of view

TRINITY_PLAYER.message.FABShow Player in FAB mode being in view

TRINITY_PLAYER.message.FABHide Player in FAB mode being out of view

TRINITY_PLAYER.message.touchStart Touch started (mobile only)

TRINITY_PLAYER.message.touchEnd Touch ended (mobile only)

TRINITY_PLAYER.message.scrubbing Audio scrubbed

TRINITY_PLAYER.message.translateTo Translation was selected

Multiple Players

There are two ways to do that:

1. set window.__trinityMultiplePlayers__ to true

2. set window.TRINITY_PLAYER.api.isMultiplePlayers to true

In the first case you don’t need to wait until the Trinity Player initial script is loaded, and can set the value right away. In the second

case you have to wait until the Trinity Player initial script is loaded, and listen to a certain event:

window.addEventListener('message', (event) => {

 if (event.data?.type !== window.TRINITY_PLAYER.constants.postMessageType) return;

 if (event.data.value.action === 'injectorImp') {
 console.info('Trinity Audio player injector script is loaded!');

 // need to set it since we have multiple players

 window.TRINITY_PLAYER.api.isMultiplePlayers = true;

 }
});

The first case is much simpler, but pollutes the global scope.

Setting Trinity Player to multiple player mode disables FAB functionality and automatically enables support for one playing player at a
time. So if a page has, say, 3 players, once the user clicks on the first one, it will start playing. When the user clicks on the second one
- the first one will stop and second one will start playing, and so on…

If you are planning to control each player manually via the API, you have to set a unique data-player-id attribute to each Trinity tag.

<html lang="en">

 <head>
 <meta charset="UTF-8">

 <title>Trinity Page Example</title>

 <meta name="viewport" content="width=device-width, user-scalable=no, initial-scale=1" />
 </head>

 <body>

 <div class="content">Hello!</div>
 <script data-player-id="player-1"

 src="https://trinitymedia.ai/player/trinity/XXXXXXX/" charset="UTF-8"></script>

 <article class="article-1"></article>

 <script data-player-id="player-2"

 src="https://trinitymedia.ai/player/trinity/XXXXXXX/" charset="UTF-8"></script>
 <article class="article-2"></article>

 <script data-player-id="player-3"

 src="https://trinitymedia.ai/player/trinity/XXXXXXX/" charset="UTF-8"></script>
 <article class="article-3"></article>

 </body>

</html>

Setting that, you are able to control a player via the API, calling pause(), play() methods passing a corresponding player ID, e.g.

window.TRINITY_PLAYER.api.pause('player-3');

window.TRINITY_PLAYER.api.play('player-3');

Also note, pageURL is a required field when using multiple players as well and is expected to pass a unique value per content.

Custom text selector

By default, the text selector is controlled by the unit configuration. But if you want to take control over it, or use multiple players on

one page, say, in an SPA, you can pass you own CSS text selector. This technique is useful when you have multiple articles on a page

and want each player to read its own article.

In order to do that, just pass a textSelector parameter to Trinity tag. Selector value should be encoded into base64 and the resulting
string should be URI encoded.

See passing CSS selector

Now just pass it as a query parameter, and the player will read text from appropriate selector.

<script data-player-id="player-123456789"
src="https://trinitymedia.ai/player/trinity/XXXXXXX/?textSelector=I2FydGljbGUtMTIz" charset="UTF-8"></script>

In order to test it on the fly, execute the following code in the browser’s JavaScript console

var textSelector = '#article-123';

var js = document.createElement('script');

js.type = 'text/javascript';

js.setAttribute('fetchpriority', 'high');
js.setAttribute('charset', 'UTF-8');

js.setAttribute('data-player-id', 'player-123456789');

js.src = 'https://trinitymedia.ai/player/trinity/XXXXXXX/?textSelector=' +
 encodeURIComponent(btoa(textSelector));

document.body.appendChild(js);

The player will get loaded and should appear on the page. In order to check if it will read the correct text, you can execute

TRINITY_PLAYER.players['player-123456789'].resultReadingText

Please note, that you can’t change textSelector on the fly. When
the player is loaded with an appropriate selector - text selector can’t be

changed, and the player will play text from the initially provided text selector.

Text Filtering

In case you would like to mark some of the text for our player not to read, just create an element with a class name of trinity-skip-

it and we’ll do the rest.

<p class="trinity-skip-it">...</p>

Helpers

Passing CSS selector

const textSelector = encodeURIComponent(btoa('#article-123'));

Result of that operation will be I2FydGljbGUtMTIz string.

Passing config

const config = encodeURIComponent(JSON.stringify({

 // some options goes here, e.g.

 x: 1,
 y: 2

}));

Result of that operation will be %7B%22x%22%3A1%2C%22y%22%3A2%7D string.

Passing CMS Attribute

const cms = encodeURIComponent(JSON.stringify({

 channelHash: 'a5gTS2', // The relevant channel hash as shown in the CMS

 tags: ['money', 'business', 'success'] // The relevant tags for the content

}));

Result of that operation will be

%7B%22channelHash%22%3A%22a5gTS2%22%2C%22tags%22%3A%5B%22money%22%2C%22business%22%2C%22success%22%5D%7D string.

Improve player loading time

<link href="https://trinitymedia.ai" rel="preconnect" crossorigin="anonymous"/>

<link href="https://vd.trinitymedia.ai" rel="preconnect" crossorigin="anonymous"/>

Code provided above helps to improve player loading time due to pre-connect to defined domains in advance.

Add HTML provided above inside head or body tag. Note, that code should be added before the Player tag, e.g.

<link href="https://trinitymedia.ai" rel="preconnect" crossorigin="anonymous"/>

<link href="https://vd.trinitymedia.ai" rel="preconnect" crossorigin="anonymous"/>

<script src="https://trinitymedia.ai/player/trinity/XXXXXXX/" charset="UTF-8"></script>

